Insights on dramatic radial fluctuations in track formation by energetic ions

نویسندگان

  • Ritesh Sachan
  • Eva Zarkadoula
  • Maik Lang
  • Christina Trautmann
  • Yanwen Zhang
  • Matthew F. Chisholm
  • William J. Weber
چکیده

We report on unexpected dramatic radial variations in ion tracks formed by irradiation with energetic ions (2.3 GeV (208)Pb) at a constant electronic energy-loss (~42 keV/nm) in pyrochlore-structured Gd2TiZrO7. Though previous studies have shown track formation and average track diameter measurements in the Gd2TixZr(1-x)O7 system, the present work clearly reveals the importance of the recrystallization process in ion track formation in this system, which leads to more morphological complexities in tracks than currently accepted behavior. The ion track profile is usually considered to be diametrically uniform for a constant value of electronic energy-loss. This study reveals the diameter variations to be as large as ~40% within an extremely short incremental track length of ~20 nm. Our molecular dynamics simulations show that these fluctuations in diameter of amorphous core and overall track diameter are attributed to the partial substitution of Ti atoms by Zr atoms, which have a large difference in ionic radii, on the B-site in pyrochlore lattice. This random distribution of Ti and Zr atoms leads to a local competition between amorphous phase formation (favored by Ti atoms) and defect-fluorite phase formation (favored by Zr atoms) during the recrystallization process and finally introduces large radial variations in track morphology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Track detection on the cells exposed to high LET heavy-ions by CR-39 plastic and terminal deoxynucleotidyl transferase (TdT)

Background: The fatal effect of ionizing radiation on cells depends on Linear Energy Transfer (LET) level. The distribution of ionizing radiation is sparse and homogeneous for low LET radiations such as X or γ, but it is dense and concentrated for high LET radiation such as heavy-ions radiation. Material and Methods: Chinese hamster ovary cells (CHO-K1) were exposed to 4 Gy Fe-ion 2000 keV/...

متن کامل

A Monte-Carlo code for the detailed simulation of electron and light-ion tracks in condensed matter.

In an effort to understand the basic mechanism of the action of charged particles in solid radiation dosimeters, we extend our Monte-Carlo code (MC4) to condensed media (liquids/solids) and present new track-structure calculations for electrons and protons. Modeling the energy dissipation process is based on a model dielectric function, which accounts in a semi-empirical and self-consistent way...

متن کامل

The Radial Distribution of Dose around the Path of a Heavy Ion in Liquid Water

Monte Carlo calculations of the radial distribution of dose in liquid water, incorporating energy deposition due to primary excitations and ionizations, have been performed for protons of energy 1, 10, 20, 50, and 100 MeV. By combining these results with earlier semi-empirical formulae used in track structure theory calculations, a corrected analytic formulation has been developed which on radi...

متن کامل

Radially restricted linear energy transfer for high-energy protons: a new analytical approach.

Radially restricted linear energy transfer (LET) is a basic physical parameter relevant to radiation biology and radiation protection. In this report a convenient method is presented for the analytical computation of this quantity without the need for complicated simulation. The method uses the energy-restricted LET L delta, as recently redefined in a 1993 ICRU draft document and supplements it...

متن کامل

A Track Physics Model of Radiation Action

A model of radiation action by energetic heavy ions, inspired by a study of particle tracks in electron sensitive emulsion, has been successfully applied to many radiation effects in condensed matter, yielding quantitative descriptions and occasional predictions. Radiation effects are attributed primarily to secondary electrons. Each detector is imagined to be a collection of targets whose radi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016